Science
There's a baby star 'sneezing' in the constellation Taurus — and it could solve a longstanding cosmic mystery
Astronomers have discovered the first known instance of a baby star "sneezing." The cosmic discharge, which may have occurred as recently as a few hundred years ago, reveals how infant stars expel most of their magnetic energy very early in their evolution — a shedding mechanism that stops their high-spinning profiles from breaking apart.
Researchers observed the cosmic sneeze in images captured by the Atacama Large Millimeter/submillimeter Array (ALMA) observatory, a set of radio telescopes located in Chile's Atacama Desert.
The star in question is a faint baby star embedded in a dense gas cloud named MC 27 roughly 450 light-years from Earth in the constellation Taurus. The cosmic cradle is a turbulent ring of gas and dust known as a protostellar disk, where unstable magnetic fields interact with gasses and intermittently blast out as spikes and arcs coated with gas and dust. This process, known as interchange instability, propels the leaked material away from the disk at roughly the speed of sound, the researchers reported in a study published Thursday (April 11) in The Astrophysical Journal.
"This discovery was unexpected," Kazuki Tokuda, an astronomer at Kyushu University in Japan and the lead author of the study, told Live Science. While previous telescope observations of the stellar nursery hadn't revealed the peculiar structures, ALMA spotted streamers not only escaping the disk but also much further away, revealing the baby star "sneezed" multiple times in the past. Such episodic behavior helps the baby star maintain a compact disk around it, the researchers say.
"It is not yet certain whether this process is universal," Tokuda said. Gas-packed, star-forming clouds that are riddled with magnetic fields increase the likelihood that a star sneezes, he said. Similar structures protruding out of protostellar disks elsewhere have been reported but remain unconfirmed, offering early hints that such expulsions of abundant magnetic fields could be a ubiquitous method by which stars evolve.
Related: Uranus and Neptune aren't made of what we thought, new study hints
Baby's first sneeze
Stars are born from the gravitational collapse of huge, opaque clouds of dust and gas. The newborns spin up as the collapse continues. Astronomers have long suspected that stars must somehow slow their rotation in their first 100,000 years, otherwise their high spin would break them apart.
-
Science2d ago
Inside Capitol Hill’s Latest UFO Hearings
-
Science2d ago
You Won’t Want to Miss the Leonid Meteor Shower. Here’s How and When You Can See It
-
Science3d ago
Here’s What Trump’s Win Means for NASA
-
Science6d ago
Why Risky Wildfire Zones Have Been Increasing Around the World
-
Science6d ago
It’s Time to Redefine What a Megafire Is in the Climate Change Era
-
Science1w ago
4 Astronauts Return to Earth After Being Delayed by Boeing’s Capsule Trouble and Hurricane Milton
-
Science1w ago
The Elegance and Awkwardness of NASA’s New Moon Suit, Designed by Axiom and Prada
-
Science1w ago
SpaceX Launches Its Mega Starship Rocket. This Time, Mechanical Arms Catch It at Landing