Science
Giant underwater avalanche decimated Atlantic seafloor 60,000 years ago, 1st-of-its-kind map reveals
An underwater avalanche decimated a huge chunk of the East Atlantic seabed nearly 60,000 years ago, leaving behind an enormous trail of destruction.
The avalanche started as a small seafloor slide in the Agadir Canyon off the coast of Morocco, but it rapidly snowballed into a thunderous torrent of sediment and boulders, according to a new study.
A wave of mud, rocks and sand measuring 660 feet (200 meters) tall came crashing down through the canyon at speeds of 40 mph (65 km/h), "ripping out the seafloor and tearing everything out in its way," study co-lead author Christopher Stevenson, a sedimentologist and lecturer at the University of Liverpool in the U.K., said in a statement. The avalanche tore through the 250-mile-long (400 kilometers) canyon before shooting out the other end and traveling another 1,000 miles (1,600 km) along the Atlantic seabed, Stevenson said.
All in all, the avalanche grew more than 100 times in size along its path, according to the study. That's a huge growth factor compared with snow avalanches and debris flows on land, which grow four to eight times in size from start to end, co-lead author Christoph Böttner, a Marie-Curie researcher in geophysics and geology at Aarhus University in Denmark, said in the statement.
Related: Large patch of the Atlantic Ocean near the equator has been cooling at record speeds — and scientists can't figure out why
Massive iNFLation of this kind could be a defining characteristic of underwater avalanches, Böttner said. "We have also seen this extreme growth in smaller submarine avalanches measured elsewhere, so we think this might be a specific behavior associated with underwater avalanches," he said.
The researchers used sediment data to retrace the path of the Agadir Canyon avalanche. They analyzed more than 300 core samples taken during research cruises over the past 40 years, as well as seismic and bathymetric (seabed topography) data from the area. By compiling this information, they created a map of the avalanche that shows its winding path inside and beyond the canyon. The team published its results Aug. 21 in the journal Science Advances.
-
Science2d ago
Inside Capitol Hill’s Latest UFO Hearings
-
Science2d ago
You Won’t Want to Miss the Leonid Meteor Shower. Here’s How and When You Can See It
-
Science3d ago
Here’s What Trump’s Win Means for NASA
-
Science6d ago
Why Risky Wildfire Zones Have Been Increasing Around the World
-
Science6d ago
It’s Time to Redefine What a Megafire Is in the Climate Change Era
-
Science1w ago
4 Astronauts Return to Earth After Being Delayed by Boeing’s Capsule Trouble and Hurricane Milton
-
Science1w ago
The Elegance and Awkwardness of NASA’s New Moon Suit, Designed by Axiom and Prada
-
Science1w ago
SpaceX Launches Its Mega Starship Rocket. This Time, Mechanical Arms Catch It at Landing